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Abstract. We consider the general p-state Potts model on random networks with a given degree distribution
(random Bethe lattices). We find the effect of the suppression of a first order phase transition in this model
when the degree distribution of the network is fat-tailed, that is, in more precise terms, when the second
moment of the distribution diverges. In this situation the transition is continuous and of infinite order,
and size effect is anomalously strong. In particular, in the case of p = 1, we arrive at the exact solution,
which coincides with the known solution of the percolation problem on these networks.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion – 05.50.+q Lattice theory and
statistics (Ising, Potts, etc.) – 87.18.Sn Neural networks

1 Introduction

Complex networks display a spectrum of unique ef-
fects [1–9]. Cooperative phenomena in complex networks
are attracting much attention these days. The theoreti-
cal study of various cooperative models on random net-
works [10–23] has demonstrated that their critical be-
haviour is extremely far from that on regular lattices and
on ‘planar graphs’ [24].

The percolation problem on uncorrelated networks
with a given degree distribution has been studied in ref-
erences [18–20]. Here, degree is the number of connections
of a vertex. The Ising model on these networks was stud-
ied by simulations in reference [10] and solved in refer-
ences [11,12] (see also Ref. [17]). It was shown that the
presence of fat tails in the degree distributions of net-
works dramatically changes the critical behaviour of these
basic cooperative models. But the site percolation prob-
lem and the Ising model are only particular cases of the
general p-state Potts model [25,26]. The site percolation is
equivalent to the one-state Potts model [27], and the Ising
model is exactly the two-state Potts model. At p ≥ 3,
the Potts model shows features, very different from those
at p = 1 and p = 2. In standard mean-field theory, the
p≥3 -state Potts model has a first-order phase transition
in contrast to percolation and the Ising model, where the
phase transitions are of second order.

Thus, the Potts model provides an essentially more
wide range of behaviours than the percolation problem
and the Ising model. The Potts model is related to a
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number of outstanding problems in statistical and math-
ematical physics, and in graph theory, e.g., the colour-
ing graph problem, etc. (for numerous applications of the
Potts model see references [25,26]). In short, this a basic
model of statistical mechanics, the direct generalization
of the percolation problem and the Ising model. Conse-
quently, before more complicated cooperative models on
networks, one has to solve the Potts model at least on the
simplest complex networks.

In the present paper we report our exact and asymp-
totically exact results for the thermodynamic properties
of the p-state Potts model on uncorrelated random net-
works with a given degree distribution. These networks
are the undirected graphs, maximally random (i.e., with
maximum entropy) under the constraint that their degree
distribution is a given one, P (k). Correlations between
degrees of vertices in such graphs are absent, as well as
clustering. In graph theory, these networks are called ‘la-
beled random graphs with a given degree sequence’ or
‘the configuration model’ [28]. One should stress that this
is the minimal model of complex networks. Most of re-
sults on cooperative models on networks were obtained
just for this basic construction [18–21,23,29–32]. See, how-
ever, references [33–36], where the Berezinskii-Kosterlitz-
Thouless percolation phase transition was studied in grow-
ing networks. See also reference [37] and references therein
for cooperative models on networks with correlations be-
tween degrees of the nearest-neighbour vertices.

In this paper we demonstrate a strong effect of a fat
tail in the degree distribution of a network on a first-order
phase transition which occurs in the Potts model with
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p � 3. We observe the suppression of the first-order phase
transition in networks with a fat-tailed degree distribu-
tion. These results were announced in reference [22].

It is convenient to use the power-law degree distribu-
tion P (k) ∝ k−γ for parametrization. Then, 〈k4〉 diverges
for γ ≤ 5, 〈k3〉 diverges for γ ≤ 4, and 〈k2〉 diverges for
γ ≤ 3.

We find that if p ≥ 3, the first order phase transition
occurs only for γ > 3, while for γ ≤ 3 the phase transition
is continuous. At γ = 3 , the phase transition is of infinite
order and similar to the transition in the Ising model on
these networks [11]. We also obtain the exact solution of
the one-state Potts model on networks and show that it
agrees with the solution of the percolation problem on
networks [20].

2 Characteristic temperature

We consider large networks with a tree-like ‘local struc-
ture’. In other words, any finite environment of a vertex
in the infinite network looks like a tree. This structure is a
property of large uncorrelated networks. Interactions are
transmitted through edges, from vertex to vertex. Thus,
it is the distribution of the number of connections of a
nearest neighbour of a vertex that is crucial. In the uncor-
related random networks, this distribution is kP (k)/〈k〉.
Then the nearest neighbours of a vertex have the average
number of connections (the average degree) 〈k2〉/〈k〉, its
second nearest neighbours have the same average degree,
and so on. This value is greater than the average number
of connections for the entire network 〈k〉, and it is much
greater than 〈k〉 if 〈k2〉 is large. It is not the mean degree
of a network that determines its cooperative behaviour
but, rather, the average degree of the nearest neighbour
of a vertex [11]. This enables us to estimate a certain char-
acteristic temperature of the p-state Potts model on the
network using the formula Tc/J = 1/ ln[(q+p−2)/(q−2)]
for the p-state Potts model on a regular Cayley tree with
the coordination number q = 〈k2〉/〈k〉 [26]. The result is

J

Tc
= ln

〈k2〉 + (p − 2) 〈k〉
〈k2〉 − 2〈k〉 · (1)

This naive estimate is exact for the Ising model [11]. It
also gives the exact percolation threshold as we will show
below. Note, however, that the meaning of the critical tem-
perature Tc is different for p = 1,2 and p � 3. At p = 1
the parameter qc = exp(J/Tc) − 1 determines the perco-
lation threshold on networks (q is the probability that a
vertex is retained). At p = 2, Tc is the critical temperature
of the continuous phase transitions in the Ising model on
networks (with J replaced by 2J). We shall show that for
p � 3 and γ > 3, the p-state Potts model undergoes a
first order phase transition, and Tc given by equation (1)
is the low-temperature boundary of the region of hystere-
sis phenomena. We shall show, however, that if γ � 3 and
p � 1, the transition in the Potts model becomes con-
tinuous, and Tc is again the critical temperature of the
transition (see discussion below).

3 General approach

Consider the p-state Potts model with the Hamiltonian:

H = −J
∑
〈ij〉

δαi,αj − H
∑

i

δαi,1 , (2)

where the first sum is over all edges of the graph, the
second one is over all vertices. δα,β = 0, 1 if α �= β and
α = β, respectively. Each vertex i can be in any of p states,
i.e., αi = 1, 2, . . . , p. We assume a ‘ferromagnetic’ interac-
tion between the nearest-neighbouring vertices, i.e., J > 0.
The ‘magnetic field’ H > 0 distinguishes the state α = 1.
Hereafter, we set J = 1. The p-state Potts model on the
regular Cayley tree is solved exactly by using recurrence
relations [26]. As networks under discussion have a local
tree-like structure, we apply the method of recurrence rela-
tions to our problem. Actually, we use the same approach
as in our solution of the Ising model on networks [11].

Consider a vertex 0 with k0 adjacent vertices with
‘spins’ in states α1,i, i = 1, 2, . . . , k0. Due to the local
tree-like structure, this vertex may be treated as a root of
a tree. We introduce

g1,i(α0) =

∑
{αl}

exp





∑

〈lm〉
δαl,αm + δα0, α1,i + H

∑
l

δαl,1


 /T


 .

(3)

The labels l and m run only over vertices that belong to
sub-trees with the root vertex α1,i, including this vertex.
Then the partition function is

Z =
∑
α0

eHδα0,1/T
k0∏

i=1

g1,i(α0). (4)

Let

x1,i(α) ≡ g1,i(α)/g1,i(1) , (5)

then the ‘magnetic moment’ M of the vertex 0 is

M =
p

p − 1

〈
δα0,1 − 1

p

〉
T

=
1

p − 1
(p − 1)eH/T − ∑

α�=1

∏k0
i=1 x1,i(α)

eH/T +
∑

α�=1

∏k0
i=1 x1,i(α)

, (6)

where 〈...〉T is the thermodynamic average. The parame-
ters x1,i describe the effects of the nearest neighbours on
the vertex 0. In turn, x1,i are expressed in terms of pa-
rameters x2,l(α) = g2,l(α)/g2,l(1), l = 1, 2, . . . , k1,i, which
describe effects of vertices in the second shell on vertices in
the first shell, and so on. The following recurrence relation
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between xn,j(α) and xn+1,l(α) holds at n � 1 and α � 2:

xn,j(α) =

eH/T + e1/T

kn,j−1∏
l=1

xn+1,l(α) +
∑

β �=1,α

kn,j−1∏
l=1

xn+1,l(β)


 /


e(1+H)/T +

∑
β �=1

kn,j−1∏
l=1

xn+1,l(β)


 . (7)

If a vertex n+1, l is a dead end, then xn+1,l(α) = 1 at
all α. Deriving the recurrence relations, we started from
some vertex 0 and then made the recurrence steps along
sub-trees. While solving the recurrence relations (7), we
start from distant vertices, i.e., from large n, and descend
along sub-trees to the vertex. Note that all states with the
index α � 2 are equivalent in respect of statistics. Only
the state α = 1 is distinguished by the applied field H .

The recurrence steps equation (7) converge exponen-
tially quickly to the fixed point which does not depend
on α. This enables us to put xn,j(α) = xn,j in equation (7)
from the very beginning for the sake of simplicity. Then
equations (6) and (7) take a form:

M =
eH/T − ∏k0

i=1 x1,i

eH/T + (p − 1)
∏k0

i=1 x1,i

, (8)

xn,j = y


kn,j−1∏

l=1

xn+1,l)


 , (9)

where we introduce

y(x) =
eH/T +

(
e1/T + p − 2

)
x

e(1+H)/T + (p − 1)x
. (10)

Note that at H = 0, in the paramagnetic phase xn,l = 1
while at H > 0, xn,l � 1. We stress that equations (8)
and (9) are exact for any tree-like graph.

4 Exact solution at p= 1: percolation
on networks

The one-state Potts model on networks at H = 0 is of a
special interest, as it relates to percolation on networks.
This limiting case can be solved exactly for an uncorre-
lated random graph with an arbitrary degree distribution.
For this let us consider the recurrence relation (9) at p = 1
and H = 0:

xn,j = e−1/T +
(
1 − e−1/T

) kn,j−1∏
l=1

xn+1,l. (11)

Note that in an uncorrelated random graph, the de-
grees kn,j are independent random variables. Since xn+1,l

in this equation depends only on km,j with m � n + 1,

one can average the left and right sides of the equation
over the ensemble of random graphs with a degree dis-
tribution P (k) and find the self-consistent equation for
the average 〈xn,j〉. In the limit n → ∞, the fixed point
〈xn,j〉 → x of the exact recurrence relation is given by

x = 1 − q +
q

〈k〉
∑

k

P (k)kxk−1, (12)

where we introduce the parameter

q = 1 − e−1/T . (13)

It is important to note that equation (13) establishes the
relation between the one-state Potts model and site per-
colation on uncorrelated networks. The latter is described
by equation (12) [20]. The parameter q has the meaning
of the retained fraction of vertices. The critical tempera-
ture Tc, equation (1), at p = 1, determines the percolation
threshold qc = 〈k〉 /(

〈
k2

〉 − 〈k〉). The strong influence of
the fat tail of the degree distribution on percolation crit-
ical exponents has been revealed and studied in detail in
reference [20].

5 First order phase transition

It is well known that the p-state Potts model, in the frame-
work of the standard mean-field theory, undergoes a first
order phase transition for all p � 3 [25,38]. The general
approach derived above enables us to consider, at H = 0,
the influence of the fat tail of the degree distribution on
the transition.

At p � 3, in order to average over the ensemble of ran-
dom graphs with a given degree distribution we use the
effective medium approach developed in reference [11] for
the Ising model on networks. First at all, as at H � 0 we
have xn,l � 0, it is convenient to introduce positive pa-
rameters hn,l: xn,l = exp(−hn,l). They are independent
random parameters and may be considered as random
effective fields acting on a vertex in the n-th shell
from neighbouring ‘spins’ in the n + 1-th shell. Then,
equations (8) and (9) take the form:

M =
eH/T − exp

(
−∑k0

l=1 h1,l

)

eH/T + (p − 1) exp
(
−∑k0

l=1 h1,l

) , (14)

hn,j = − ln


y


exp


−

kn,j−1∑
l=1

hn+1,l








 . (15)

At dead ends we have hn+1,l = 0. At H = 0 in the param-
agnetic phase hn,l = 0, while in the ordered phase hn,l �= 0.
Equations (14) and (15) determine the magnetization M
of a graph as a function of T and H .

While solving the recurrence relations (15), we start
from distant spins with h ≈ 0 and descend along sub-
trees to α. In the limit n → ∞, the parameter h1,i is the
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fixed point of the recurrence steps. The thermodynamic
behaviour is determined by this fixed point.

The right-hand sides of equations (14) and (15) depend
only on the sum of the independent and equivalent random
variables hn,j . So, let us use the following ansatz [11]:

k∑
l=1

hn,l ≈ kh + O(k1/2), (16)

where h ≡ 〈hn,l〉 is the average value of the ‘effective field’
acting on a vertex. This approximation takes into account
the most ‘dangerous’ highly connected vertices in the best
way. With this ansatz, averaging over the ensemble of ran-
dom graphs and applying the ansatz (16) to equations (14)
and (15), we obtain

〈M〉 =
∑

k

P (k)
eH/T − e−kh

eH/T + (p − 1)e−kh
, (17)

h = −〈k〉−1
∑

k

P (k)k ln y
[
e−(k−1)h

]
≡ G(h). (18)

The parameter h plays the role of the order parameter. At
H = 0, h = 0 above Tc and h > 0 below Tc.

Let us describe the thermodynamic properties of the
Potts model with p � 3 on the infinite networks at H = 0.
For this, one must solve the equation of state (18).

At first, we consider the case 〈k4〉 < ∞. The character
of the transition and a characteristic temperature may be
found from the analysis of the expansion of G(h) over
small h. If p � 3 it is enough to take into account only
first two terms: G(h) = g1h + g2h

2 + ... where

g1 =
〈k(k − 1)〉 (

e1/T − 1
)

〈k〉 (
e1/T + p − 1

) , (19)

g2 =

〈
k(k − 1)2

〉 (
e1/T − 1

)
(p − 2)

2 〈k〉 (
e1/T + p − 1

)2 . (20)

One sees that at high temperatures, the coefficient g1 ≈ 0.
When temperature decreases, g1 increases and becomes
larger than 1. The point where g1 = 1 is the specific
point. The corresponding temperature Tc is given by equa-
tion (1). As g2 > 0 at all temperatures, the Potts model
with p � 3 undergoes a first order phase transition from
the paramagnetic phase to the ordered one. Note that for
the Ising model (p = 2) the coefficients g2 = 0 and g3 < 0,
and the phase transition is continuous [11]. In the para-
magnetic phase the probabilities to find any vertex in the
states α = 1, 2, . . . , p are equal, which corresponds to the
solution h = 0. In the ordered phase, one of the states,
α = 1 in our consideration, has a larger probability in
comparison to other states with α � 2. This corresponds
to the solution with h > 0.

At large γ, the system undergoes a standard first order
phase transition (see the temperature behaviour of M in
Figure 1 for γ = 6). The decrease of γ modifies the second
term in the expansion of G(h): at γ = 4 we have 〈k4〉 →
∞ and G(h) = g1h + g′2h

2 ln(1/h) + . . ., at 3 < γ < 4

0 1 2 3
T/J

0

0.2

0.4

0.6

0.8

1

M

1

2

3

Fig. 1. The temperature dependence of the magnetization of
the p-state Potts model with p = 5 on uncorrelated random
networks with the degree distribution P (k) = Ak−γ for dif-
ferent exponents γ: 1) γ = 6; 2) γ = 4; 3) γ = 3.2. The
temperature region between dotted lines for each curve is the
hysteresis region. The up and down arrows correspond cooling
and heating, respectively.

we find G(h) = g1h + g′2hγ−2 + . . . It is important to
note that the coefficient g′2 > 0. In a general form, the
condition of a first-order phase transition may be written
as d(h−1G)/dh > 0. We have found that in the range
3 < γ � 4 the derivative d(h−1G)/dh at small h is positive
and the transition is still of the first order (see in Fig. 1
our results for γ = 4 and 3.2).

In order to find the temperature behaviour of the mag-
netization in the first order phase transition, we have
solved numerically the equation (18). Results of the nu-
merical solution of equations (18) and (17) reveals that
when γ approaches 3 from above, the jump of the mag-
netic moment in the first order phase transition tends to
zero. Moreover, it is interesting to note that the tempera-
ture behaviour of M in a wide temperature range just after
the jump follows the exponential law M ∼ exp(−cT ) with
the constant c which depends on the complete degree dis-
tribution P (k) (see the results in Fig. 1 for γ = 3.2). It is
the behaviour that is expected for the infinite order phase
transition at γ = 3 [11].

In the case of the first order phase transition, there is
a temperature region, T2 < T < T1, of hysteresis phenom-
ena owing to the existence of metastable states. For the
Potts model, the low temperature boundary T2 is the tem-
perature below which the ordered state with h �= 0 is the
only stable state. In other words, below T2 the free energy
as a function of the order parameter has only one mini-
mum corresponding to h �= 0, while the solution h = 0
corresponds to the maximum. One can show that T2 is
determined by the equation g1 = 1, i.e. T2 = Tc. In the
range T2 < T < T1, the states with h �= 0 and h = 0
correspond to the minimum of the free energy, i.e. one of
these states, having larger energy, is metastable. At tem-
peratures T > T1 the paramagnetic state, h = 0, is the
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only possible solution of the equation of state (18). T1 is
determined by the set of equation (18) and dG(h)/dh = 1.
The hysteresis region is shown in Figure 1 at different γ.
One can see that its width ∆T = T1 − T2 increases with
increasing γ, however, ∆T/T2 → 0.

The phase diagram of the Potts model on uncorre-
lated networks was also studied in reference [23] in the
framework of a simple mean field approach. The authors
of reference [23] found that the first order phase transi-
tion is realized when exponent γ is above the threshold
line γ(p) where 3 < γ(p) < 4. This conclusion was ob-
tained by using a state equation for the average magneti-
zation M , which has a form M = F (M). In principle, this
equation resembles our equation of state equation (18).
However, the approach used in reference [23] results in a
very different behavior of a singular contribution to the
state equation. In reference [23], the singular contribution
as(γ)Mγ−2 to F (M) becomes negative, as(γ) < 0, for
γ < γ(p).

In this respect, our results essentially differ from those
in reference [23]. In the framework of our approach, the
singular contribution to G(h) in equation (18), g′2h

γ−2, is
positive for all γ > 3 and p ≥ 3. As a result, the phase
transition is of the first order in this range of the pa-
rameters. The reason for this difference is evidently the
simplified mean field theory of reference [23].

6 Continuous transition for 2 < γ � 3

The case γ = 3. – Here, the second moment
〈
k2

〉
di-

verges. Using, for brevity, the continuum approxima-
tion for the degree distribution, we obtain G(h) ≈
(〈k〉h/(pT )) ln[p/(〈k〉h)]. One sees that at small h, the
second derivative d2G(h)/dh2 is negative in contrast to
the case γ > 3 where d2G(h)/dh2 is positive. It means the
change of the order of the phase transition. Instead of the
first order phase transition discussed above, the p-state
Potts model with p � 3 undergoes an infinite order phase
transition at the critical temperature Tc, equation (1),
similarly to the Ising model [11] and percolation [20]. This
conclusion also agrees with the phenomenological theory
of critical phenomena in complex networks [22].

One should emphasize that when
〈
k2

〉
diverges, the

critical temperature Tc is infinite for the infinite networks
(see Eq. (1)). However, in any finite network,

〈
k2

〉
< ∞,

and Tc is finite, although it may be very high, Tc
∼=

〈k2〉/(〈k〉p) (see below). At temperatures, which are much
less than Tc, but where h � 1, so T 
 1, we obtain

h ∼= (p/〈k〉)e−2pT/〈k〉, M ∼= e−2pT/〈k〉. (21)

Without the continuum approximation, we have, instead
of 〈k〉 in the exponential, a constant which is determined
by the complete form of P (k).

The case 2 < γ < 3. – Again Tc for large networks is
very high and the phase transition is continuous. Using
the expansion G(h) ∼= g(〈k〉 /(pT ))hγ−2, we find, in the

range 1 � T � Tc, that the Potts model demonstrates
the behaviour

h,M ∼ T−1/(3−γ), (22)

which is quite similar to the Ising model [11].
In accordance with equation (1), Tc diverges when

〈k2〉 → ∞. However, in finite networks, 〈k2〉 is finite be-
cause of the finite-size cutoff of the degree distribution.
In scale-free networks, it is usually estimated as kcut ∼
k0N

1/(γ−1), where N is the total number of vertices in a
network, k0 is a ‘minimal degree’ or the lower boundary
of the power-law dependence, and 〈k〉 ≈ k0(γ−1)/(γ−2).
Then, using estimates from references [4,20,32] we obtain

Tc ≈ 〈k〉 ln N

p
at γ = 3,

Tc ≈ 4(γ − 2)2

p(3 − γ)(γ − 1)
〈k〉N (3−γ)/(γ−1) for 2 < γ < 3.

(23)

These expressions generalize the finite-size effect obtained
for the Ising model on networks [11].

7 Conclusions

Our investigations of the Potts and Ising models on un-
correlated random networks demonstrate a general strong
effect of fat tails in the degree distribution on the order of
the phase transition and its critical temperature.

As is natural, at p = 1 and p = 2, our results coin-
cide with known ones for percolation and the Ising model,
respectively. In the Potts model with p � 3 states, the
phase transition of the first order occurs only when the
second moment

〈
k2

〉
is finite, i.e., in scale-free networks,

at γ > 3. When
〈
k2

〉
diverges, the behaviour of the Potts

and Ising models are similar. They undergo the infinite
order phase transition. We suggest that this phenomenon
(the suppression of a first order phase transition in favour
of an infinite order one) is of a general nature and it takes
place in other cooperative models with short range inter-
action on random networks.

S.N.D and J.F.F.M. were partially supported by the project
POCTI/MAT/46176/2002. A.G. acknowledges the support of
the NATO program OUTREACH.
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